An Ink Spreading Model for Dot-On-Dot Spectral Prediction
نویسندگان
چکیده
Due to increasing printing accuracies and the possibility of printing several droplets at the same pixel location, there is a renewed interest in dot-on-dot printing models. In the present contribution, we improve a dot-on-dot spectral prediction model relying on the Yule-Nielsen modified Spectral Neugebauer model by taking into account ink spreading in all ink superposition conditions. Since ink spreading is different when ink dots are printed alone, printed in superposition with one ink or printed in superposition with two inks, we create for each superposition condition an ink spreading function mapping nominal to effective dot surface coverages. When predicting the reflection spectrum of a dot-on-dot halftone patch, its known nominal surface coverage values are converted into effective coverage values by weighting the contributions from different ink spreading functions according to the corresponding ratio of colorant surface coverages. We analyze the colorimetric prediction improvement brought by our ink spreading model for dot-on-dot thermal transfer prints and for ink-jet prints. Accounting for ink spreading according to different ink superposition conditions considerably improves the prediction accuracy. In the case of ink jet prints at 120 lpi, the mean ΔE94 difference between predictions and measurements is reduced from 4.54 to 1.55 (accuracy improvement factor: 3). Due to the slight misregistration between the ink layers, spectral predictions accounting for ink spreading in the case of dot-on-dot screens are less accurate than corresponding predictions for classical mutually rotated screens.
منابع مشابه
Simplified ink spreading equations for CMYK halftone prints
The Yule-Nielsen modified spectral Neugebauer model enables predicting reflectance spectra from surface coverages. In order to provide high prediction accuracy, this model is enhanced with an ink spreading model accounting for physical dot gain. Traditionally, physical dot gain, also called mechanical dot gain, is modeled by one ink spreading curve per ink. An ink spreading curve represents the...
متن کاملSpectral prediction and dot surface estimation models for halftone prints
We propose a new spectral prediction model as well as new approaches for modeling ink spreading which occurs when printing ink layer superpositions. The spectral prediction model enhances the classical ClapperYule model by taking into account the fact that proportionally more incident light through a given colorant surface is reflected back onto the same colorant surface than onto other coloran...
متن کاملCalibrating the ink spreading curves enhanced Yule-Nielsen modified spectral Neugebauer model with the two-by-two dot centering printer model
The Yule-Nielsen modified spectral Neugebauer model enhanced for accounting for ink spreading in the different ink superposition conditions (EYNSN) requires measuring the reflectances of halftone calibration patches in order to compute the ink spreading curves mapping nominal ink surface coverages to effective ink surface coverages. Spectral measurements of dozens of halftone patch reflectance ...
متن کاملCalibrating the Yule–Nielsen Modified Spectral Neugebauer Model with Ink Spreading Curves Derived from Digitized RGB Calibration Patch Images
“ b h o f t M d c 0 o t t p t d t d bstract. The Yule–Nielsen modified spectral Neugebauer model YNSN) enhanced for accounting for ink spreading in the different nk superposition conditions requires a spectrophotometer to meaure the reflectances of halftone calibration patches in order to comute the ink spreading curves mapping nominal ink surface coverge to effective ink surface coverage. Inst...
متن کاملSpectral reflection and dot surface prediction models for color halftone prints
The proposed new spectral reflection model enhances the classical Clapper-Yule model by taking into account the fact that proportionally more incident light through a given colorant surface is reflected back onto the same colorant surface than onto other colorant surfaces. It comprises a weighted mean between a component specifying the part of the incident light that exits through the same colo...
متن کامل